
523/610 nm BrightLine® dual-band bandpass filter

Part Number: FF01-523/610-25

Semrock, Inc.

3625 Buffalo Road, Suite 6 Rochester, New York 14624

Main Phone: +1 585.594.7050 (worldwide)
Toll Free Phone: 866.736.7625 (866-SEMROCK)
(within US and Canada)

Your filter spectrum may differ slightly from the typical spectrum above, but is certified to meet the optical specifications noted below.

523/610 nm BrightLine® dual-band bandpass filter

Individual multiband fluorescence bandpass filters that utilize Semrock's patented single-substrate construction. These filters have extremely high transmission, steep and well-defined edges, and outstanding blocking between the passbands. All thin-film, hard-coated construction for unsurpassed performance and reliability.

Part Number	Size	Price1	Stock Status
FF01-523/610-25	25 mm x 3.5 mm	\$395	In Stock
FF01-523/610-23.3-D	23.3 mm x 2.0 mm (unmounted)	\$395	2nd Day Ship

Don't see a size you need? Contact us for custom sizing - available in less than a week (sizing fee applies).

1) US domestic pricing only. If you are ordering from outside the US, please contact your nearest regional distributor for the correct list price.

Optical Specifications

Specification	Value
Transmission Band 1	Tavg > 93% 503 – 543 nm
Center Wavelength 1	523 nm
Guaranteed Minimum Bandwidth 1	40 nm
FWHM Bandwidth 1 (nominal)	45 nm
Transmission Band 2	Tavg > 93% 584 - 636 nm
Center Wavelength 2	610 nm
Guaranteed Minimum Bandwidth 2	52 nm
FWHM Bandwidth 2 (nominal)	59.4 nm
Blocking Band 1	ODavg > 4 200 - 400 nm
Blocking Band 2	ODavg > 4 400 - 473 nm
Blocking Band 3	ODavg > 8 473 - 491 nm (Design specification - measurements are noise-floor limited)
Blocking Band 4	OD > 3.5 497 nm
Blocking Band 5	OD > 3.5 551 nm
Blocking Band 6	ODavg > 8 559 - 568 nm (Design specification - measurements are noise-floor limited)
Blocking Band 7	OD > 3.5 576 nm
Blocking Band 8	ODavg > 5 655 - 700 nm
Blocking Band 9	ODavg > 5 700 - 925 nm

General Filter Specifications

AND THE PROPERTY OF THE PROPER		
Specification	Value	
Angle of Incidence	0 ± 5 degrees	
Cone Half-angle	7 degrees	
	Testing has proven to show no signs of degradation when exposed to at least 6.0 W of power from an unfiltered	

xenon arc lamp over a 25 mm diameter (corresponding to 1.2 W/cm²) for over 500 hrs.

Effective Index 1.95

Physical Filter Specifications (applies to standard sized parts; contact us regarding other sizes)

Specification	Value
Transverse Dimensions (Diameter)	25 mm
Transverse Tolerance (mounted)	+ 0.0 / – 0.1 mm
Filter Thickness (Mounted)	3.5 mm
Filter Thickness Tolerance (Mounted)	± 0.1 mm
Clear Aperture	≥ 22 mm
Scratch-Dig	60-40
Substrate Thickness (unmounted)	2.0 mm
Substrate Thickness Tolerance (unmounted)	± 0.1 mm
Orientation	Arrow on ring indicates preferred direction of propagation of light